Avances en la encapsulación de curcumina y su potencial como alternativa a la tartrazina en alimentos

Autores/as

DOI:

https://doi.org/10.63415/saga.v2i4.317

Palabras clave:

curcumina, Curcuma Longa L, encapsulación, tartrazina, alimentos

Resumen

La creciente demanda de la industria alimentaria por sustituir los colorantes sintéticos ha impulsado la búsqueda de alternativas naturales. En este contexto, la curcumina, extraída de Curcuma longa L., se perfila como el principal candidato para reemplazar a la tartrazina. No obstante, su aplicación a nivel industrial se ve limitada por su baja solubilidad en agua y su inestabilidad frente a variaciones de pH, temperatura y exposición a la luz. Para superar estas restricciones se han desarrollado procesos tecnológicos basados en técnicas de encapsulación, que emplean distintos materiales encapsulantes y permiten obtener partículas de curcumina con mayor estabilidad y propiedades tecnológicas favorables. Sin embargo, hasta la fecha no se han realizado aplicaciones directas de curcumina encapsulada como colorante en matrices alimentarias reales. Este trabajo revisa los avances en la estabilización de la curcumina mediante encapsulación, resalta sus ventajas potenciales como colorante natural y plantea la necesidad de investigaciones aplicadas que verifiquen su desempeño en comparación con la tartrazina, con miras al desarrollo de alimentos más seguros y saludables.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Alzate, J., López-Padilla, J., Caicedo, J., & Salazar, J. (2012). Obtención del complejo ciclodextrina-curcumina y su uso como reemplazante de tartrazina. Lasallista de Investigación, 9(2), 75–86. http://repository.lasallista.edu.co:8080/ojs/index.php/rldi/article/view/331

Arango, A., Martin, A., Cosero, M., Jiménez, C., & Londoño, J. (2018). Encapsulation of curcumin using supercritical antisolvent (SAS) technology to improve its stability and solubility in water. Food Chemistry, 258, 156–163. https://doi.org/10.1016/j.foodchem.2018.02.088

Bhandari, B., D’Arc, B., & Padukka, I. (1999). Encapsulation of lemon oil by paste method using β-cyclodextrin: Encapsulation efficiency and profile of oil volatiles. Journal of Agricultural and Food Chemistry, 47(12), 5194–5197. https://doi.org/10.1021/jf9902503

Bhosale, R., & Singhal, R. (2006). Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches. Carbohydrate Polymers, 66(4), 521–527. https://doi.org/10.1016/j.carbpol.2006.04.007

Blasco Piquer, M. (1999). España patente nº 2121538.

Chen, L., Bai, G., Yang, R., Zang, J., Zhou, T., & Zhao, G. (2014). Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chemistry, 149, 307–312. https://doi.org/10.1016/j.foodchem.2013.10.115

Chen, L., Bai, G., Yang, S., Yang, R., Zhao, G., Xu, C., & Leung, W. (2014). Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability. Food Research International, 62, 1147–1153. https://doi.org/10.1016/j.foodres.2014.05.054

Chuah, A., Jacob, B., Jie, Z., Ramesh, S., Mandal, S., Puthan, J., & Shreeram, S. (2014). Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin. Food Chemistry, 156, 227–233. https://doi.org/10.1016/j.foodchem.2014.01.108

De Marco, I., Rossmann, M., Prosapio, V., Reverchon, E., & Braeuer, A. (2015). Control of particle size, at micrometric and nanometric range, using supercritical antisolvent precipitation from solvent mixtures: Application to PVP. Chemical Engineering Journal, 273, 344–352. https://doi.org/10.1016/j.cej.2015.03.100

de Vos, P., Faas, M., Spasojevic, M., & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20, 292–302. https://doi.org/10.1016/j.idairyj.2009.11.008

Delgado, V., & Paredes, L. (2002). Natural colorants for food and pharmaceutical uses. CRC Press. https://books.google.com.ec/books?id=zXLLBQAAQBAJ

Desaniti, O., & Cahyono, B. (2015). The correlation between knowledge and attitude on food colorant uses of PKK mothers in Penggaron Lor village. Procedia Food Science, 3, 156–161. https://doi.org/10.1016/j.profoo.2015.01.017

Gangurde, A., Kundaikar, H., Javeer, S., Jaiswar, D., Degani, M., & Amin, P. (2015). Enhanced solubility and dissolution of curcumin by a hydrophilic polymer solid dispersion and its in silico molecular modeling studies. Journal of Drug Delivery Science and Technology, 29, 226–237. https://doi.org/10.1016/j.jddst.2015.08.005

Gautam, R., Gautam, P., Banerjee, S., Rawat, V., Soni, S., & Chattopadhyaya, M. (2015). Removal of tartrazine by activated carbon biosorbents of Lantana camara: Kinetics, equilibrium modeling and spectroscopic analysis. Journal of Environmental Chemical Engineering, 3, 788–796. https://doi.org/10.1016/j.jece.2014.11.026

González, J., Villanueva, M., Piehl, L., & Copello, G. (2015). Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: Adsorption and desorption study. Chemical Engineering Journal, 280, 42–48. https://doi.org/10.1016/j.cej.2015.05.112

Hu, L., Shi, Y., Li, J., Gao, N., Ji, J., Niu, F., & Wang, S. (2015). Enhancement of oral bioavailability of curcumin by a novel solid dispersion system. AAPS PharmSciTech, 16, 1327–1334. https://doi.org/10.1208/s12249-014-0254-0

Jia, J., Wang, W., Gao, Y., & Zhao, Y. (2015). Controlled morphology and size of curcumin using ultrasound in supercritical CO2 antisolvent. Ultrasonics Sonochemistry, 27, 389–394. https://doi.org/10.1016/j.ultsonch.2015.06.011

Leimann, V., Gonçalves, O., Sorita, G., Rezende, S., Bona, E., Fernandes, I., & Berreiro, M. (2019). Heat and pH stable curcumin-based hydrophilic colorants obtained by the solid dispersion technology assisted by spray-drying. Chemical Engineering Science, 201, 248–258. https://doi.org/10.1016/j.ces.2019.04.044

Leshik, R. (1981). United States patente nº 4307-117. https://patents.google.com/patent/EP0037204A1/en

Li, B., Konecke, S., Wegiel, L., Taylor, L., & Edgar, K. (2013). Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohydrate Polymers, 98(1), 1108–1116. https://doi.org/10.1016/j.carbpol.2013.07.017

Li, X., Zhang, Q., Ma, K., Mei, H., & Guo, Z. (2015). Identification and determination of 34 water-soluble synthetic dyes in foodstuff by high performance liquid chromatography–diode array detection–ion trap time-of-flight tandem mass spectrometry. Food Chemistry, 182, 316–326. https://doi.org/10.1016/j.foodchem.2015.03.019

Liu, W., Chen, X., Cheng, Z., & Selomulya, C. (2016). On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. Journal of Food Engineering, 169, 189–195. https://doi.org/10.1016/j.jfoodeng.2015.08.034

López, E., Blanch, G., Ruiz del Castillo, M., & Sánchez, S. (2012). Encapsulation and isomerization of curcumin with cyclodextrins characterized by electronic and vibrational spectroscopy. Vibrational Spectroscopy, 62, 292–298. https://doi.org/10.1016/j.vibspec.2012.06.008

Meng, F., Trivino, A., Prasad, D., & Chauhan, H. (2015). Investigation and correlation of drug polymer miscibility and molecular interactions by various approaches for the preparation of amorphous solid dispersions. European Journal of Pharmaceutical Sciences, 71, 12–24. https://doi.org/10.1016/j.ejps.2015.02.003

Mohan, P., Sreelakshmi, G., Muraleedharan, C., & Joseph, R. (2012). Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy. Vibrational Spectroscopy, 62, 77–84. https://doi.org/10.1016/j.vibspec.2012.05.002

Navas, A. (1992). Fluorometric determination of curcumin in yogurt and mustard. Journal of Agricultural and Food Chemistry, 40(1), 56–59. https://doi.org/10.1021/jf00013a011

Oancea, P., & Meltzer, V. (2013). Photo-Fenton process for the degradation of tartrazine (E102) in aqueous medium. Journal of the Taiwan Institute of Chemical Engineers, 44(5), 990–994. https://doi.org/10.1016/j.jtice.2013.03.014

Osorio, J., Carvalho, P., Rostagno, M., Petenate, A., & Meireles, M. (2016). Precipitation of curcuminoids from an ethanolic turmeric extract using a supercritical antisolvent process. The Journal of Supercritical Fluids, 108, 26–34. https://doi.org/10.1016/j.supflu.2015.09.012

Paradkar, A., Ambike, A., Jadhav, B., & Mahadik, K. (2004). Characterization of curcumin–PVP solid dispersion obtained by spray drying. International Journal of Pharmaceutics, 271(1–2), 281–288. https://doi.org/10.1016/j.ijpharm.2003.11.014

Patil, B., Jayaprakasha, G., Chidambara, K., & Vikram, A. (2009). Bioactive compounds: Historical perspectives, opportunities, and challenges. Journal of Agricultural and Food Chemistry, 57(18), 8142–8160. https://doi.org/10.1021/jf9000132

Pimentel, D., Padilla, L., Castaño, O., & Duque, L. (2018). Obtención de colorantes de los rizomas de Curcuma longa L. mediante solubilización con aceite. Revista Cubana de Plantas Medicinales, 23(3). http://www.revplantasmedicinales.sld.cu/index.php/pla/article/view/614

Prasad, S., Gupta, S., Tyagi, A., & Aggarwal, B. (2014). Curcumin, a component of golden spice: From bedside to bench and back. Biotechnology Advances, 32(6), 1053–1064. https://doi.org/10.1016/j.biotechadv.2014.04.004

Rafiee, Z., Nejatian, M., Daeihamed, M., & Mahdi, S. (2018). Application of different nanocarriers for encapsulation of curcumin. Critical Reviews in Food Science and Nutrition, 59(21), 3468–3497. https://doi.org/10.1080/10408398.2018.1495174

Ramachandraiah, K., Choi, M., & Hong, G. (2018). Micro- and nano-scaled materials for strategy-based applications in innovative livestock products: A review. Trends in Food Science & Technology, 71, 25–35. https://doi.org/10.1016/j.tifs.2017.10.017

Salvia-Trujillo, L., Verkempinck, S., Sun, L., Van A., Grauwet, T., & Hendrickx, M. (2017). Lipid digestion, micelle formation and carotenoid bioaccessibility kinetics: Influence of emulsion droplet size. Food Chemistry, 229, 653–662. https://doi.org/10.1016/j.foodchem.2017.02.146

Schranz, J., & Palos, H. (1983). United States patente nº 4368-208.

Seo, S., Han, H., Chun, M., & Choi, H. (2012). Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier. International Journal of Pharmaceutics, 424(1–2), 18–25. https://doi.org/10.1016/j.ijpharm.2011.12.051

Siviero, A., Gallo, E., Maggini, V., Gori, L., Mugelli, A., Firenzuoli, F., & Vannacci, A. (2015). Curcumin, a golden spice with a low bioavailability. Journal of Herbal Medicine, 5(2), 57–70. https://doi.org/10.1016/j.hermed.2015.03.001

Sorouraddin, M., Saadati, M., & Mirabi, F. (2015). Simultaneous determination of some common food dyes in commercial products by digital image analysis. Journal of Food and Drug Analysis, 23(3), 447–452. https://doi.org/10.1016/j.jfda.2014.10.007

Sowasod, N., Nakagawa, K., Tanthapanichakoon, W., & Charinpanitkul, T. (2012). Development of encapsulation technique for curcumin loaded O/W emulsion using chitosan based cryotropic gelation. Materials Science and Engineering C, 32(3), 790–798. https://doi.org/10.1016/j.msec.2012.01.027

Tayyem, R. H., Al-Delaimy, W., & Rock, C. (2006). Curcumin content of turmeric and curry powders. Nutrition and Cancer, 55(2), 126–131. https://doi.org/10.1207/s15327914nc5502_2

Tønnesen, H. (2002). Solubility, chemical and photochemical stability of curcumin in surfactant solutions: Studies of curcumin and curcuminoids, XXVIII. Pharmazie, 57(12), 820–824. https://www.researchgate.net/publication/10923141

Tønnesen, H., Másson, M., & Loftsson, T. (2002). Cyclodextrin complexation: Solubility, chemical and photochemical stability. International Journal of Pharmaceutics, 244(1–2), 127–135. https://doi.org/10.1016/S0378-5173(02)00323-X

Vasconcelos, T., Sarmento, B., & Costa, P. (2007). Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discovery Today, 12(23–24), 1068–1075. https://doi.org/10.1016/j.drudis.2007.09.005

Wakte, P., Sachin, B., Patil, A., Mohato, D., Band, T., & Shinde, D. (2011). Optimization of microwave, ultrasonic and supercritical carbon dioxide assisted extraction techniques for curcumin from Curcuma longa. Separation and Purification Technology, 79(1), 50–55. https://doi.org/10.1016/j.seppur.2011.03.010

Waleczek, J., Cabral, H., Hempel, B., & Schmidt, P. (2003). Phase solubility studies of pure (−)-α-bisabolol and camomile essential oil with β-cyclodextrin. European Journal of Pharmaceutics and Biopharmaceutics, 55(2), 247–251. https://doi.org/10.1016/S0939-6411(02)00166-2

Wikene, K., Bruzell, E., & Tønnesen, H. (2015). Characterization and antimicrobial phototoxicity of curcumin dissolved in natural deep eutectic solvents. European Journal of Pharmaceutical Sciences, 80, 26–32. https://doi.org/10.1016/j.ejps.2015.09.013

Yadav, D., & Kumar, N. (2014). Nanonization of curcumin by antisolvent precipitation: Process development, characterization, freeze drying and stability performance. International Journal of Pharmaceutics, 477(1–2), 564–577. https://doi.org/10.1016/j.ijpharm.2014.10.070

Zhao, L., Zeng, B., & Zhao, F. (2014). Electrochemical determination of tartrazine using a molecularly imprinted polymer–multiwalled carbon nanotubes–ionic liquid supported Pt nanoparticles composite film coated electrode. Electrochimica Acta, 146, 611–617. https://doi.org/10.1016/j.electacta.2014.08.108

Descargas

Publicado

30/11/2025

Número

Sección

Ciencias Agropecuarias

Cómo citar

Moncayo-Palchisaca, D. V. (2025). Avances en la encapsulación de curcumina y su potencial como alternativa a la tartrazina en alimentos. SAGA: Revista Científica Multidisciplinar, 2(4), 591-600. https://doi.org/10.63415/saga.v2i4.317

Artículos similares

21-30 de 34

También puede Iniciar una búsqueda de similitud avanzada para este artículo.