Avances en la encapsulación de curcumina y su potencial como alternativa a la tartrazina en alimentos
DOI:
https://doi.org/10.63415/saga.v2i4.317Palabras clave:
curcumina, Curcuma Longa L, encapsulación, tartrazina, alimentosResumen
La creciente demanda de la industria alimentaria por sustituir los colorantes sintéticos ha impulsado la búsqueda de alternativas naturales. En este contexto, la curcumina, extraída de Curcuma longa L., se perfila como el principal candidato para reemplazar a la tartrazina. No obstante, su aplicación a nivel industrial se ve limitada por su baja solubilidad en agua y su inestabilidad frente a variaciones de pH, temperatura y exposición a la luz. Para superar estas restricciones se han desarrollado procesos tecnológicos basados en técnicas de encapsulación, que emplean distintos materiales encapsulantes y permiten obtener partículas de curcumina con mayor estabilidad y propiedades tecnológicas favorables. Sin embargo, hasta la fecha no se han realizado aplicaciones directas de curcumina encapsulada como colorante en matrices alimentarias reales. Este trabajo revisa los avances en la estabilización de la curcumina mediante encapsulación, resalta sus ventajas potenciales como colorante natural y plantea la necesidad de investigaciones aplicadas que verifiquen su desempeño en comparación con la tartrazina, con miras al desarrollo de alimentos más seguros y saludables.
Descargas
Referencias
Alzate, J., López-Padilla, J., Caicedo, J., & Salazar, J. (2012). Obtención del complejo ciclodextrina-curcumina y su uso como reemplazante de tartrazina. Lasallista de Investigación, 9(2), 75–86. http://repository.lasallista.edu.co:8080/ojs/index.php/rldi/article/view/331
Arango, A., Martin, A., Cosero, M., Jiménez, C., & Londoño, J. (2018). Encapsulation of curcumin using supercritical antisolvent (SAS) technology to improve its stability and solubility in water. Food Chemistry, 258, 156–163. https://doi.org/10.1016/j.foodchem.2018.02.088
Bhandari, B., D’Arc, B., & Padukka, I. (1999). Encapsulation of lemon oil by paste method using β-cyclodextrin: Encapsulation efficiency and profile of oil volatiles. Journal of Agricultural and Food Chemistry, 47(12), 5194–5197. https://doi.org/10.1021/jf9902503
Bhosale, R., & Singhal, R. (2006). Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches. Carbohydrate Polymers, 66(4), 521–527. https://doi.org/10.1016/j.carbpol.2006.04.007
Blasco Piquer, M. (1999). España patente nº 2121538.
Chen, L., Bai, G., Yang, R., Zang, J., Zhou, T., & Zhao, G. (2014). Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chemistry, 149, 307–312. https://doi.org/10.1016/j.foodchem.2013.10.115
Chen, L., Bai, G., Yang, S., Yang, R., Zhao, G., Xu, C., & Leung, W. (2014). Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability. Food Research International, 62, 1147–1153. https://doi.org/10.1016/j.foodres.2014.05.054
Chuah, A., Jacob, B., Jie, Z., Ramesh, S., Mandal, S., Puthan, J., & Shreeram, S. (2014). Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin. Food Chemistry, 156, 227–233. https://doi.org/10.1016/j.foodchem.2014.01.108
De Marco, I., Rossmann, M., Prosapio, V., Reverchon, E., & Braeuer, A. (2015). Control of particle size, at micrometric and nanometric range, using supercritical antisolvent precipitation from solvent mixtures: Application to PVP. Chemical Engineering Journal, 273, 344–352. https://doi.org/10.1016/j.cej.2015.03.100
de Vos, P., Faas, M., Spasojevic, M., & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20, 292–302. https://doi.org/10.1016/j.idairyj.2009.11.008
Delgado, V., & Paredes, L. (2002). Natural colorants for food and pharmaceutical uses. CRC Press. https://books.google.com.ec/books?id=zXLLBQAAQBAJ
Desaniti, O., & Cahyono, B. (2015). The correlation between knowledge and attitude on food colorant uses of PKK mothers in Penggaron Lor village. Procedia Food Science, 3, 156–161. https://doi.org/10.1016/j.profoo.2015.01.017
Gangurde, A., Kundaikar, H., Javeer, S., Jaiswar, D., Degani, M., & Amin, P. (2015). Enhanced solubility and dissolution of curcumin by a hydrophilic polymer solid dispersion and its in silico molecular modeling studies. Journal of Drug Delivery Science and Technology, 29, 226–237. https://doi.org/10.1016/j.jddst.2015.08.005
Gautam, R., Gautam, P., Banerjee, S., Rawat, V., Soni, S., & Chattopadhyaya, M. (2015). Removal of tartrazine by activated carbon biosorbents of Lantana camara: Kinetics, equilibrium modeling and spectroscopic analysis. Journal of Environmental Chemical Engineering, 3, 788–796. https://doi.org/10.1016/j.jece.2014.11.026
González, J., Villanueva, M., Piehl, L., & Copello, G. (2015). Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: Adsorption and desorption study. Chemical Engineering Journal, 280, 42–48. https://doi.org/10.1016/j.cej.2015.05.112
Hu, L., Shi, Y., Li, J., Gao, N., Ji, J., Niu, F., & Wang, S. (2015). Enhancement of oral bioavailability of curcumin by a novel solid dispersion system. AAPS PharmSciTech, 16, 1327–1334. https://doi.org/10.1208/s12249-014-0254-0
Jia, J., Wang, W., Gao, Y., & Zhao, Y. (2015). Controlled morphology and size of curcumin using ultrasound in supercritical CO2 antisolvent. Ultrasonics Sonochemistry, 27, 389–394. https://doi.org/10.1016/j.ultsonch.2015.06.011
Leimann, V., Gonçalves, O., Sorita, G., Rezende, S., Bona, E., Fernandes, I., & Berreiro, M. (2019). Heat and pH stable curcumin-based hydrophilic colorants obtained by the solid dispersion technology assisted by spray-drying. Chemical Engineering Science, 201, 248–258. https://doi.org/10.1016/j.ces.2019.04.044
Leshik, R. (1981). United States patente nº 4307-117. https://patents.google.com/patent/EP0037204A1/en
Li, B., Konecke, S., Wegiel, L., Taylor, L., & Edgar, K. (2013). Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohydrate Polymers, 98(1), 1108–1116. https://doi.org/10.1016/j.carbpol.2013.07.017
Li, X., Zhang, Q., Ma, K., Mei, H., & Guo, Z. (2015). Identification and determination of 34 water-soluble synthetic dyes in foodstuff by high performance liquid chromatography–diode array detection–ion trap time-of-flight tandem mass spectrometry. Food Chemistry, 182, 316–326. https://doi.org/10.1016/j.foodchem.2015.03.019
Liu, W., Chen, X., Cheng, Z., & Selomulya, C. (2016). On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. Journal of Food Engineering, 169, 189–195. https://doi.org/10.1016/j.jfoodeng.2015.08.034
López, E., Blanch, G., Ruiz del Castillo, M., & Sánchez, S. (2012). Encapsulation and isomerization of curcumin with cyclodextrins characterized by electronic and vibrational spectroscopy. Vibrational Spectroscopy, 62, 292–298. https://doi.org/10.1016/j.vibspec.2012.06.008
Meng, F., Trivino, A., Prasad, D., & Chauhan, H. (2015). Investigation and correlation of drug polymer miscibility and molecular interactions by various approaches for the preparation of amorphous solid dispersions. European Journal of Pharmaceutical Sciences, 71, 12–24. https://doi.org/10.1016/j.ejps.2015.02.003
Mohan, P., Sreelakshmi, G., Muraleedharan, C., & Joseph, R. (2012). Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy. Vibrational Spectroscopy, 62, 77–84. https://doi.org/10.1016/j.vibspec.2012.05.002
Navas, A. (1992). Fluorometric determination of curcumin in yogurt and mustard. Journal of Agricultural and Food Chemistry, 40(1), 56–59. https://doi.org/10.1021/jf00013a011
Oancea, P., & Meltzer, V. (2013). Photo-Fenton process for the degradation of tartrazine (E102) in aqueous medium. Journal of the Taiwan Institute of Chemical Engineers, 44(5), 990–994. https://doi.org/10.1016/j.jtice.2013.03.014
Osorio, J., Carvalho, P., Rostagno, M., Petenate, A., & Meireles, M. (2016). Precipitation of curcuminoids from an ethanolic turmeric extract using a supercritical antisolvent process. The Journal of Supercritical Fluids, 108, 26–34. https://doi.org/10.1016/j.supflu.2015.09.012
Paradkar, A., Ambike, A., Jadhav, B., & Mahadik, K. (2004). Characterization of curcumin–PVP solid dispersion obtained by spray drying. International Journal of Pharmaceutics, 271(1–2), 281–288. https://doi.org/10.1016/j.ijpharm.2003.11.014
Patil, B., Jayaprakasha, G., Chidambara, K., & Vikram, A. (2009). Bioactive compounds: Historical perspectives, opportunities, and challenges. Journal of Agricultural and Food Chemistry, 57(18), 8142–8160. https://doi.org/10.1021/jf9000132
Pimentel, D., Padilla, L., Castaño, O., & Duque, L. (2018). Obtención de colorantes de los rizomas de Curcuma longa L. mediante solubilización con aceite. Revista Cubana de Plantas Medicinales, 23(3). http://www.revplantasmedicinales.sld.cu/index.php/pla/article/view/614
Prasad, S., Gupta, S., Tyagi, A., & Aggarwal, B. (2014). Curcumin, a component of golden spice: From bedside to bench and back. Biotechnology Advances, 32(6), 1053–1064. https://doi.org/10.1016/j.biotechadv.2014.04.004
Rafiee, Z., Nejatian, M., Daeihamed, M., & Mahdi, S. (2018). Application of different nanocarriers for encapsulation of curcumin. Critical Reviews in Food Science and Nutrition, 59(21), 3468–3497. https://doi.org/10.1080/10408398.2018.1495174
Ramachandraiah, K., Choi, M., & Hong, G. (2018). Micro- and nano-scaled materials for strategy-based applications in innovative livestock products: A review. Trends in Food Science & Technology, 71, 25–35. https://doi.org/10.1016/j.tifs.2017.10.017
Salvia-Trujillo, L., Verkempinck, S., Sun, L., Van A., Grauwet, T., & Hendrickx, M. (2017). Lipid digestion, micelle formation and carotenoid bioaccessibility kinetics: Influence of emulsion droplet size. Food Chemistry, 229, 653–662. https://doi.org/10.1016/j.foodchem.2017.02.146
Schranz, J., & Palos, H. (1983). United States patente nº 4368-208.
Seo, S., Han, H., Chun, M., & Choi, H. (2012). Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier. International Journal of Pharmaceutics, 424(1–2), 18–25. https://doi.org/10.1016/j.ijpharm.2011.12.051
Siviero, A., Gallo, E., Maggini, V., Gori, L., Mugelli, A., Firenzuoli, F., & Vannacci, A. (2015). Curcumin, a golden spice with a low bioavailability. Journal of Herbal Medicine, 5(2), 57–70. https://doi.org/10.1016/j.hermed.2015.03.001
Sorouraddin, M., Saadati, M., & Mirabi, F. (2015). Simultaneous determination of some common food dyes in commercial products by digital image analysis. Journal of Food and Drug Analysis, 23(3), 447–452. https://doi.org/10.1016/j.jfda.2014.10.007
Sowasod, N., Nakagawa, K., Tanthapanichakoon, W., & Charinpanitkul, T. (2012). Development of encapsulation technique for curcumin loaded O/W emulsion using chitosan based cryotropic gelation. Materials Science and Engineering C, 32(3), 790–798. https://doi.org/10.1016/j.msec.2012.01.027
Tayyem, R. H., Al-Delaimy, W., & Rock, C. (2006). Curcumin content of turmeric and curry powders. Nutrition and Cancer, 55(2), 126–131. https://doi.org/10.1207/s15327914nc5502_2
Tønnesen, H. (2002). Solubility, chemical and photochemical stability of curcumin in surfactant solutions: Studies of curcumin and curcuminoids, XXVIII. Pharmazie, 57(12), 820–824. https://www.researchgate.net/publication/10923141
Tønnesen, H., Másson, M., & Loftsson, T. (2002). Cyclodextrin complexation: Solubility, chemical and photochemical stability. International Journal of Pharmaceutics, 244(1–2), 127–135. https://doi.org/10.1016/S0378-5173(02)00323-X
Vasconcelos, T., Sarmento, B., & Costa, P. (2007). Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discovery Today, 12(23–24), 1068–1075. https://doi.org/10.1016/j.drudis.2007.09.005
Wakte, P., Sachin, B., Patil, A., Mohato, D., Band, T., & Shinde, D. (2011). Optimization of microwave, ultrasonic and supercritical carbon dioxide assisted extraction techniques for curcumin from Curcuma longa. Separation and Purification Technology, 79(1), 50–55. https://doi.org/10.1016/j.seppur.2011.03.010
Waleczek, J., Cabral, H., Hempel, B., & Schmidt, P. (2003). Phase solubility studies of pure (−)-α-bisabolol and camomile essential oil with β-cyclodextrin. European Journal of Pharmaceutics and Biopharmaceutics, 55(2), 247–251. https://doi.org/10.1016/S0939-6411(02)00166-2
Wikene, K., Bruzell, E., & Tønnesen, H. (2015). Characterization and antimicrobial phototoxicity of curcumin dissolved in natural deep eutectic solvents. European Journal of Pharmaceutical Sciences, 80, 26–32. https://doi.org/10.1016/j.ejps.2015.09.013
Yadav, D., & Kumar, N. (2014). Nanonization of curcumin by antisolvent precipitation: Process development, characterization, freeze drying and stability performance. International Journal of Pharmaceutics, 477(1–2), 564–577. https://doi.org/10.1016/j.ijpharm.2014.10.070
Zhao, L., Zeng, B., & Zhao, F. (2014). Electrochemical determination of tartrazine using a molecularly imprinted polymer–multiwalled carbon nanotubes–ionic liquid supported Pt nanoparticles composite film coated electrode. Electrochimica Acta, 146, 611–617. https://doi.org/10.1016/j.electacta.2014.08.108
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Denis Viterbo Moncayo-Palchisaca (Autor/a)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.























